Penny+Giles

A Curtiss-Wright Company

JC6000 MULTI AXIS JOYSTICK CONTROLLER

INNOVATION IN MOTION

The JC6000 rugged joystick controller is designed for demanding operator control applications in off-highway vehicles and other man-machine interfaces, where strength, reliability, and handle functionality are important. Available in one or two axis configurations, this joystick can be supplied with non-contact Hall effect sensors or long life potentiometer tracks. The JC6000's compact size, high lever strength and superb proportional control are ideal for applications which include operator controls on a wide range of off-highway vehicles, including cranes, loaders, excavators, access platforms, tractors and harvesters.

Handles and grips

The JC6000 can be specified with a choice of handles and grips to increase the functionality of the operator controls. With a choice of push buttons, trigger grips, proportional and switched rockers in a variety of different configurations, users can match their handle selection to suit their unique application.

Innovative design

With a choice of Hall effect sensors or potentiometer tracks to provide the analogue signals proportional to lever movement, the JC6000 can be configured to provide a range of output signals, directional and center switching functions, lever forces, and handle styles. CAN output can also be specified on the Hall sensor version for digital communication with vehicle systems.

Features Benefits

- Hall effect or potentiometric sensing
- Single or dual axis control
- High strength lever with superb proportional control
- Sealed above the panel to IP66
- Choice of outputs and switches
- Choice of handles/grips with or without switches
- AMP 040 series multi-lock connectors
- Interchangeable with Penny + Giles' JC600 model

Quality Assurance
Penny + Giles are accredited to BS EN ISO9001:2000
Quality is at the heart of all our systems ensuring the
reliability of our products from initial design to final despatch.

Total reliability

The JC6000 includes lever mechanics designed to give smooth proportional control, with Hall effect sensors that provide contactless, long life operation up to 15 million operations. Alternative potentiometer tracks featuring multi-fingered precious metal wipers give low electrical noise and a long life of greater than 5 million operations.

Safety

The JC6000 with the Hall sensors option has dual outputs fitted as standard, allowing the signals to be monitored and compared for failure detection in safety critical applications. Additional independent switch functions can be specified for directional and center position indication - vital for vehicle system start-up safety. These switch functions are also available with the potentiometer tracks, which can also be specified with padding resistors to limit the output signals to $10-90 \%$ or $25-75 \%$, allowing comparison and error detection.

Custom design

Penny+Giles offer an extensive range of fingertip and hand operated joysticks in standard modular configurations, designed to meet the majority of individual customer needs, but we can customise our designs for OEMs who require something more specialised to their application. Please talk to our technical sales team about your requirements.

Cell manufactured

The modular design of the JC6000 joystick is designed to provide the user with a wide choice of options, but allows efficient build and despatch using cell manufacturing principles. Contact your nearest sales office for the latest information on availability.

PERFORMANCE

MECHANICAL

Lever operating force

breakout* operating*	\mathbf{N}	7 or 16
maximum allowable**	\mathbf{N}	19 or 39 (full deflection)
\mathbf{N}	390 (490 overload)	
mechanical angle		

* Measured at 55 mm above upper flange face ${ }^{* *}$ Measured 130 mm above upper flange face

ENVIRONMENTAL

Operating temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Environmental protection
(above the flange)
Vibration
Shock
EMC immunity level
EMC emissions level
ESD immunity level

ELECTRICAL -

HALLEFFECT SENSOR

Resolution

Supply voltage range Vdc
Over voltage (maximum) Vdc
Reverse polarity (maximum) Vdc
Output voltage span - options Vdc

Load impedance (minimum) $\quad \mathbf{k} \Omega$
Center voltage (no load) \%
Current consumption
Insulation resistance
Output sense
Output matching

ELECTRICAL

CONNECTIONS
Mating 12 way connector and pins
Mating 12 way harness
-25 to $+80(-25$ to +80 with microswitches)
-25 to +85 (-25 to +85 with microswitches)
IP66 IEC 60529 (fitted with HKN handle)

Level $\pm 3 \mathrm{~g}, 10 \mathrm{~Hz}$ to 200 Hz (random) @ 3.6g(rms)
$20 \mathrm{~g}, 6 \mathrm{mS}$, half sine profile
$100 \mathrm{~V} / \mathrm{m}, 30 \mathrm{MHz}$ to $1 \mathrm{GHz}, 1 \mathrm{KHz} 80 \%$ sine wave modulation, EN50082-2 (1995)
Complies with EN50081-2 (1993), 150kHz to 30 MHz , level B
IEC61000-4-2 level 48 kV contact discharge, 15 kV air discharge

Infinite

5 ± 0.5 regulated transient free
15 continuous
14.5
$\pm 25 \%$ span - nominal 1.1 to 3.9
$\pm 30 \%$ span - nominal 1.0 to 4.0
$\pm 40 \%$ span - nominal 0.5 to 4.5
5
48-52 of supply voltage
mA $\quad 13$ per axis (6.5 per sensor)
Greater than $50 \mathrm{M} \Omega$ at 50 Vdc
The dual outputs rise together in the same direction, increasing with lever forward (and right), decreasing with lever backward (and left)
See maximum output difference diagram below

All Hall sensor connections terminate in a 12 -way AMP 040 series multi-lock connector in the joystick base. See page 8 for pin identities

SA48061 (AMP 04012 way connector 174045-2; pins 175062-1)
P49779 (connector, pins and 380 mm long cable)

ELECTRICAL -
POTENTIOMETER TRACK

Resolution
Track resistance $\mathbf{\pm 2 0 \%}$
$\mathbf{k} \Omega$
Track operating angle
Output voltage range
Center tap voltage
Center tap angle
Center tap to switch alignment
Supply voltage maximum
Wiper circuit impedance
Power dissipation @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Insulation resistance

Virtually infinite
$1.8,2,2.9,5$
± 18
0-100, 10-90, 25-75 of input
48-52 of applied voltage
± 2.5
Within 0.5
32
1 minimum recommended*
0.25

Greater than $15 \mathrm{M} \Omega$ at 50 Vdc

* The long life resistive elements require a high impedance load in the wiper circuit to minimise the current flowing through the wiper for optimum life conditions

ELECTRICAL -		
DIRECTIONAL OR CENTER		
SWITCH (LOW CURRENT)	Not available with CANbus output	
Switch operating angle	\circ	1.5 or 5 either side of center
SUpply voltage maximum	Vdc	35
Load current maximum	mA	200 resistive

ELECTRICAL

 CONNECTIONSMating 16 way connector and pins
Mating 16 way harness
Mating 8 way connector and pins
Mating 8 way harness

ELECTRICAL -
MICROSWITCH
Switch configuration
Switch operating angle
Contact rating
Switch life minimum
Operating temperature
All primary potentiometer track and directional/center switch connections terminate in a 16-way AMP 040 series multi-lock connector in the joystick base. Secondary potentiometer track connections terminate in an 8 -way AMP 040 series multi-lock connector. See page 8 for pin identities
SA47931 (AMP 04016 way connector 174046-2; Pins 175062-1)
P49780 (connector, pins and 380 mm long cable)
SA304522 (AMP 0408 way connector 174044-2; pins 175062-1)
P303083 (connector, pins and 380 mm long cable)

ELECTRICAL

 CONNECTIONSCAN OUTPUTVERSION

Supply voltage range
Vdc
CAN version
Protocol
Under-panel sealing

[^0]Microswitch connections in the potentiometer joystick will replace the low current directional/center switches in the 16 -way AMP 040 series multi-lock connector in the joystick base. In the Hall sensor joystick, switches terminate in the 8 -way connector. See Electrical Connections on page 8 for pin identities

JC6000 with Hall sensing option can also be supplied with an integrated CANBUS output offering the J 1939 protocol. This CANBUS interface meets the requirements of IEC61508 SIL level 1
9 to 36
CAN 2.0b
J1939
IP66 IEC60529

ELECTRICAL

CONNECTIONS
Mating connector and pins

All connections terminate in the 6-way Deutsch DTM04-6P integrated connector P304844 (includes 390 mm flying leads) JOYSTICK CONTROLLER HOW TO SPECIFY

PERFORMANCE OPTIONS

CODE

AXES
SENSING Output

LEVER SPRING FORCE

Heavy duty, 16 N breakout, 39 N full deflection	H
Medium duty, 7 N breakout,19N full deflection	M

Square $\pm 20^{\circ}$ mechanical angle in X and Y directions $\quad \mathbf{S}$
No lock or detents fitted \quad NL
MECHANICAL
FEATURES

MICROSWITCH

INTERFACE

HANDLE/GRIP STYLE
See pages 9-15

Single	NY
Dual	$\mathbf{X Y}$

Potentiometer Px or Pxx selected from below
$5 \mathrm{k} 0-100 \%, \pm 5^{\circ}$ directional switch
$1.8 \mathrm{k} 0-100 \%, \pm 5^{\circ}$ directional switch
$2.9 \mathrm{k} 25-75 \%, \pm 1.5^{\circ}$ directional switch
$2 \mathrm{k} 10-90 \%, \pm 1.5^{\circ}$ directional switch
$2 \mathrm{k} 10-90 \%, \pm 5^{\circ}$ directional switch
2.9k $25-75 \%, \pm 5^{\circ}$ directional switch

Dual outputs per axis, $2 \mathrm{k} 10-90 \%, \pm 1.5^{\circ}$ directional switch
Dual
XY

Dual Hall Effect sensors each axis $\mathbf{H x x}$ with output selected from below	
Dual Hall Effect sensors each axis and $\pm 1.5^{\circ}$ directional switch Bxx with output	
selected from below	
1.1 Vdc to 3.9 Vdc	
1.0 Vdc to 4.0 Vdc	
0.5 Vdc to 4.5 Vdc	

CANbus Output HC
Single Axis/Dual Axis 1 or 2
Note: Directional track switches not currently available with CANbus output.
No switch fitted \mathbf{N}

High current microswitches, 2A @ 30Vdc (Not available with CANbus output) Y

Standard interface (no electronics)		STN
CANbus output, SAE J1939 protocol,	Source Address 33 (HEX)	JR1
1000 CAN counts	Source Address 34	JL1
	Source Address 35	JC1
	Source Address 36	JA1

Standard knob, no functions	HKN
Hand grip with options for buttons or rocker	HB
Ergonomic grip with multiple buttons and proportional rockers	A
Trigger grip with optional rocker switching	MG
No handle	NH
No handle, flying leads fitted (allows customer to fit own handle.)	NHF

EXAMPLEORDER CODE JC6000-XY-PRR-H-S-NL-N - STN - HKN

DIMENSIONS
Note: drawings not to scale

INSTALLATION

The joystick is designed to be fitted from below the mounting panel, through a 70 mm diameter hole. The effectiveness of the joystick flange sealing is dependent on the panel mounting surface being sufficiently rigid to compress the sealing gaiter. The surface finish of the mounting panel is critical to achieving an adequate seal and rough surface finishes, paint chips, deep scratches, etc. should be avoided.

Recommended panel thickness

3.5 to 6 mm

Recommended screw torque

Fixing screws can be driven to a maximum torque of 5 Nm when clamped against a 3.5 mm thick panel.

The mounting hole depth is 12.6 mm . For through-hole installation, the screws can be driven at a torque of 3.5 Nm directly through the blind cast holes to remove the cast covers. The joystick mounting flange should be connected to the vehicle chassis or reference plane (normally zero volts).

POTENTIOMETER AND HALL EFFECT CONTROLLER

CAN OUTPUT CONTROLLER

CAN OUTPUT OPTIONS

The sealing of the lower cover meets the requirements of IP66 (IEC 60529) and uses an integrated Deutsch DTM04-6P 6 pin connector with the cover. The use of a suitable sealed mating connector will enable a full IP66 connection to be made. The cover also includes an integrated breather system to ensure pressure regulation under all barometric pressure and temperature conditions without moisture ingress into the joystick.

ELECTRICALCONNECTIONS

16-way primary connector	

8-way secondary connector (where fitted)

Potentiometer tracks

Y switch track N / O (lever forward +Y)
X switch track center on
X pot track left
X pot track wiper signal
X pot track right
X pot track center tap
X switch track common
X switch track N/O (lever left -X)
Y pot track backward
Y pot track wiper signal
Y pot track forward
Y pot track center tap
Y switch track common
Y switch track N/O (lever backward -Y)
X switch track N / O (lever right $+X$)
Y switch track center on

Secondary Y pot track backward

Secondary Y pot track center tap
Secondary Y pot track wiper signal
Secondary Y pot track forward
Secondary X pot track right
Secondary X pot track wiper signal
Secondary X pot track center tap
Secondary X pot track left

Pins 1 to 12 used for handle connections
See chosen handle style for connection details
-
-
-
-
$-$
-
-
-
-
-

Not available
Not available
Not available
Not available
Not available
Not available

Hall effect sensors

Pins 1 to 12 used for handle connections
See chosen handle style for details
-
-
-
-
-
-
-
-
-
-
Not connected
Not connected
Not connected
Not connected

Forward (directional or micro) switch common
Forward switch output
Backward switch output
Backward switch common
Left switch common
Left switch output
Right switch output
Right switch common
+5 V supply - sensors 3 and 4
OV supply - sensors 3 and 4
+5 V supply - sensors 1 and 2
OV supply - sensors 1 and 2
Forward/backward output - sensor 3
Left/right output - sensor 2
Left/right output - sensor 4
Forward/backward output - sensor 1
Not connected
Not connected
Not connected
Not connected

Ground
Power
CAN high
CAN low
CAN shield
Not connected

j C 6000 ioystick controller HANDLE OPTIONS

NH or NHF

These options are selected when no handle is required to be fitted. NHF option has wires fitted to the joystick connector on the base, through the operating lever.

HB

Developed to replicate the functionality of the traditional mechanical handle, the HB range of hand grips can be specified with either a button or rocker switch, mounted into the top of the handle, within easy reach of the operator's thumb. These can be configured as a 'Person Present' feature or, for example, the steer signal for an access platform.

A RANGE

Designed to meet the demands for more complex control systems in off-highway applications, the ' A ' range of ergonomic hand grips can be fitted with a combination of analogue outputs, push button and 'Person Present' switches. The handle can be specified with two independent analogue outputs generated by proportional rockers which, in turn, provide auxiliary directional switching in addition to the potentiometric output. When coupled with the two axis JC6000 base joystick this unit can provide a four-axis controller.
This handle can also be purchased separately, for fitting to customer levers or assemblies. Ask our sales team for more details on this option.

MG
Designed to provide a simple approach to a 'Person Present' handle whilst offering the flexibility of switch options in the top of the handle. The profile of the MG handle ensures the operator's fingers are permanently close to the buttons, minimising operator fatigue and maximising functional control. The handle can be supplied with or without a hand rest and can be configured with a combination of trigger lever, single or dual switches.
This handle can also be purchased separately, for fitting to customer levers or assemblies. Ask our sales team for more details on this option.

HKN HANDLE OPTION

DIMENSIONS

NH OR NHF HANDLE OPTIONS

ELECTRICAL CONNECTIONS
Wire size
Wire current

28AWG
1.4A

NH option has no wires fitted.

NHF option allows customer to fit own handle style to joystick operating lever.

Pin Wire color
Grey

Yellow
Red
Orange
Brown
Black
Green
White
Blue
Violet
Pink
Red/Yellow
Not connected
Not connected
Not connected
Not connected

NHF handle option note: Wires terminate on the 12-way connector (Potentiometer version), or the 16 -way connector (Hall sensor version).

HB HANDLE OPTIONS

DIMENSIONS

SPECIFICATION
Maximum height above flange
Maximum grip diameter
Environmental sealing (IEC 60529)

Number of switches

Action

Switch operating force
Maximum current @ 30Vdc
Expected life (operations)

	HBO	HB1	HB 2	HBD
mm	149	155	155	164
mm	35	35	35	35
	IP65	IP65	IP65	IP65
	0	1	2	1
		Momentary rocker	Momentary rocker	Momentary button
N	-	-	-	7
A	-	2.5	2.5	5
	100,000	100,000	100,000	100,000

ELECTRICAL

CONNECTIONS
Common terminal 11
11

11	11
4	1
1	

N/O contact switch 1
4
1
N/O contact switch 2

Note: Signals terminate on the 12 way connector (potentiometer version) or the 16 way connector (Hall sensor version)

A RANGE HANDLE OPTIONS

SPECIFICATION

Maximum height above flange mm 166
Maximum grip diameter mm 61
Environmental sealing
(IEC 60529) IP65
Number of switches
Action
Switch operating force
Maximum current @ 50Vdc mA
Expected life (operations)
Weight
Operating temperature
Storage temperature

1 to 6 in the top plate Momentary button
N 3
200
1 million
g 170-A2LD option
${ }^{\circ}$ C $\quad-40$ to +70
${ }^{\circ}$ C $\quad-40$ to +80

FUNCTIONALITY

```
SWITCH 1
SWITCH 2
SWITCH 3
SWITCH 4
SWITCH 5
SWITCH 6
TOP SWITCH
PERSON PRESENT
```

LEFT ROCKER
RIGHT ROCKER
HORIZONTAL

ROCKER

Rocker profile
Breakout force
Operating force
Mechanical movement
Electrical movement
Expected life (operations)
Load current (maximum)
Power dissipation @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Track resistance
Output voltage
Center tap angle
Directional or center off switch
Switch gap
Switch supply voltage

Standard (S) or V profile (V)
N 5 at the end of the rocker
N 15 at the end of the rocker

- $\pm 10\left(\pm 1^{\circ}\right)$
- $\pm 9\left(\pm 1^{\circ}\right)$

5 million
mA 200 (see note on page 5)
W 0.25
Will match JC6000 Y axis resistance \dagger
Will match JC6000 Y axis output \dagger

- ± 1.5

Standard

- 2.5 either side of center

Vdc 35
\dagger unless requested otherwise

SWITCHES

SWITCH AND ROCKER OPTIONS
AOOO
AOOT
AOOD
AOOB

ELECTRICAL

CONNECTIONS

	Pin	Wire color		Pin	Wire color
Common terminal (for all switches)	11	Black	Rocker center tap	6	Yellow/Red*
Switch 1	4	Blue	Rocker zero or negative supply (L, R or H)	10	Pink/Grey
Switch 2	3	Yellow	Rocker output signal (L or H only)	5	Pink
Switch 3	2	Blue/White	Rocker output signal (R)	9	White
Switch 4	1	White/Green	Rocker switch common	11	Black
Switch 5	\dagger	Red	Rocker switch (L forward)	2	Blue/Orange
Switch 6	\dagger	Violet	Rocker switch (L backward)	1	Green
Top switch	\dagger	Pink with marker	Rocker switch (R forward)	3	Yellow
Person present switch	12	Red/Green	Rocker switch (R backward)	4	Blue
Person present switch	8	Black/White	Rocker switch (H left)	4	Blue/Orange
Rocker positive supply (L, R or H)	7	White/Red	Rocker switch (H right)	Green	

\dagger depends on other options selected
*Center tap not connected on A3LB and A3RB handles
Note: Signals terminate on the 12-way connector (Potentiometer version), or the 16 -way connector (Hall sensor version)

Note: When ordering a handle fitted with a rocker, two profiles can be supplied ($\mathrm{S}=$ standard profile; $\mathrm{V}=\mathrm{v}$ profile) please specify style when ordering.

DIMENSIONS

SPECIFICATION

Maximum height above flange
Maximum grip diameter
Environmental sealing (IEC 60529)
Number of switches
Action
Switch operating force

Trigger	N	5
Switch $\mathbf{1}$ or $\mathbf{2}$	\mathbf{N}	7
Maximum current @ 30Vdc	$\mathbf{m A}$	100
Expected life (operations)		1 million
Operating temperature	${ }^{\circ} \mathbf{C}$	-25 to +75
Storage temperature	${ }^{\circ} \mathbf{C}$	-30 to +80

HANDLE CODE	Top switch position	Trigger switch	Hand rest
MG00	None	No	No
MG01	1	No	No
MG02	1 \& 2	No	No
MG03	$1 \& 2$	Yes	No
MG04	$1 \& 2$	Yes	Yes
MG05	1	Yes	Yes
MG06	1 \& 2	No	Yes
MG07	1	No	Yes
MG08	1	Yes	No
MG09	None	Yes	Yes
MG10	None	None	Yes
MG11	None See Electrical Connections for wire color	Yes codes.	No
ELECTRICAL CONNECTIONS	Pin number	Wire color	
Common terminal (for top switches)	12	Black	
Switch 1- Left	6	Blue	
Switch 2 - Right	3	Green	
Trigger switch	4	Blue/Orange	
Trigger switch	5	Yellow	
	Note: Signals terminate on the 12 -way connector (Potentiometer version), or the 16 -way connector (Hall sensor version)		

[^0]: Not available with CANbus output
 Two switches per axis. Normally open at lever center position

 - 2 to 5 either side of center

 3A@125Vac, 2A@30Vdc
 100,000 cycles, cycled at $1 \mathrm{~Hz}, 1 \mathrm{~A}$ and 12 Vdc
 -25 to +85

