A58H1

PHOTOELECTRIC ROTARY ENCODER

The encoder A 58 H 1 is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units. The encoder has external flexible coupling.

The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

MECHANICAL DATA

Line number on disc (z)	$100 ; 250 ; 500 ;$
	$600 ; 800 ; 1000 ;$
	$1024 ; 1125 ; 1250 ;$
	$1500 ; 2000 ; 2048 ;$
	$2500 ; 3000 ; 3600 ;$
	$4000 ; 5000 ; 9000 ;$
	10800

Three versions of output signals are available:

- A58H1-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A58H1-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H1-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\times 1, \times 2$, $x 3, x 4, x 5, x 8, x 10$.

Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	IP64
Maximum weight without cable	0.3 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

Protective cover remove for long shafts

$\mathbf{D , m m} \quad \varnothing 6 \quad \varnothing 8 \quad \varnothing 10 \quad \varnothing 12 \quad \varnothing 14^{*}$ (on option)
*For one side fixation from encoder flange side

PRECIZIKA
METROLOGY

ELECTRICAL DATA

VERSION	A58H1-A $\sim 11 \mu$ App	A58H1-AV 1 Vpp	A58H1-F П TTL; ПHTL
Supply voltage (\cup_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; $+(10$ to 30$) \mathrm{V}$
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source Incremental signals	LED Two sinusoidal I , and I Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	LED Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -\mathrm{A}=0.6-1.2 \mathrm{~V} \\ & -\mathrm{B}=0.6-1.2 \mathrm{~V} \end{aligned}$	LED Differential square-wave $\cup 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic "O") $\leq 0.5 \mathrm{~V}$ at $U_{P}=+5 \mathrm{~V}$ - low (logic " 0 ") $\leq 1.5 \mathrm{~V}$ at $U_{p}^{P}=10$ to 30 V - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - high $\left(\right.$ logic "1") $\geq\left(\cup_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Reference signal	One quasi-triangular I peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revoIution. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic " 0 ") $<1.5 \mathrm{~V}$ at $U_{p}^{P}=10$ to 30 V - high $\left(\right.$ logic " 1 ") $>2.4 \mathrm{~V}$ at $U_{P}=+5 \mathrm{~V}$ - high (logic "1") $>\left(\cup_{P}-2\right) \vee$ at $U_{P}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times \mathrm{k}) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I lags I for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanica rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 9-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000			CS5000			
EXTERNAL INTERPOLATOR	NK						

ORDER FORM

A58H1 - XX	$X X X X-X X-X X X-X X X$				
OUTPUT SIGNAL VERSION:	PULSE NUMBER PER REVOLUTION:	SHAFT HOLE DIAMETER:	SUPPLY VOLTAGE:	CABLE LENGTH:	CONNECTOR TYPE:
$\begin{aligned} & \text { A } \\ & \text { AV } \\ & F \end{aligned}$	1... 100 1... 108000	$6,8,10,12,14^{*} \mathrm{~mm}$ *with additional hub for shaft mounting, for one side fixation from flange side	$\begin{aligned} & 05 \mathrm{~V}-+5 \mathrm{~V} \\ & 30 \mathrm{~V}-+(10 \text { to } 30) \mathrm{V}^{\star} \end{aligned}$ *only for A58H-F with HTL output	ARO1-1m ARO2 - 2 m ARO3 - 3m	W- without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins D9 - flat, 9 pins D15 - flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pins
ORDER EXAMPLES:		1) $\mathrm{A} 58 \mathrm{H} 1-\mathrm{AV}-1024-6-05 \mathrm{~V}-\mathrm{A}$ 2) $\mathrm{A} 58 \mathrm{H} 1-\mathrm{F}-4000-8-30 \mathrm{~V}-\mathrm{AR}$ 3) $\mathrm{A} 58 \mathrm{H} 1-\mathrm{F}-4000 / 500-8-30$	01w /C12 AR06/C12		

