

A Curtiss-Wright Company

CONTACTLESS ROTARY POSITION SENSORS

Innovation In Motion

Wimesure • 54, rue de Versailles • 78460 CHEVREUSE • Tél. 01 30 47 22 00 • Fax 01 30 47 28 29 www.wimesure.fr • info@wimesure.fr

INNOVATION IN MOTION

The Penny+Giles contactless rotary position sensors have been specially developed to provide maximum performance under extremes of temperature, humidity, vibration, shock and immersion. Using the latest advances in 12bit Hall effect sensing technology, this expanded range of new generation sensors are factory programmed to provide the user with a wide range of previously unavailable options, including single or dual redundant outputs, clockwise or anticlockwise rotation and measurement angles from 0-20° to 0-360° in 1° increments.

This sensor range is ideally suited to operate in extremely hostile applications that are typical in motorsport, off-road specialist vehicles, military vehicles and heavy industrial machinery.

Contactless magnetic rotary sensor IC

The NRH/TPS/SRH series use a high performance, factory programmable 12 bit magnetic rotary sensor IC that includes integrated Hall elements and digital signal processing. The angular position information is provided by a magnet integrated with the sensor's shaft, or supplied separately. The sensor provides a pulse width modulated signal or an absolute analog voltage signal. Most models are designed to operate from either a 5Vdc regulated or 9-30Vdc unregulated supply, with a high stability circuit and EMC immunity to 100V/m.

Features

- Contactless technology
- Absolute analog or digital (PWM) output
- Measuring range from 20° to 360° in 1° increments
 - Single or Dual outputs
 - Temperature error less than 50ppm/°C
 - Rugged housing and shaft designs
 - Protection up to IP69K
 - Choice of shaft attachments and mountings
 - Rapid despatch of any option
 - CE approved

EMC Directive 2004/108/EEC

The products detailed in this document have been tested to the requirements of EN 61000-4-3 (Immunity).

Quality Assurance Penny+Giles are accredited to BS EN ISO9001:2008 Quality is at the heart of all our systems ensuring the reliability of our products from initial design to final despatch.

Certificate No. LRQ 0924881

Benefits

- Long life and impervious to dither vibration
- No loss of position on power down
- Maximum sensitivity in all applications
- Optional redundant output for safety critical applications
- Maximises system accuracy over temperature range
- Suitable for extreme environments
- Operation in hostile environments including pressure washing
- Interchangeable with existing installations
- Eliminates customer inventory
- Confidence in EMC performance

Design Statement

The design of models SRH501P and SRH502P are subject to Community Registered Design No 000961610-0001.

The majority of our designs include an input protector circuit (Patent number GB2418083).

oage 4

page

က

22

page 27

Innovative, rugged designs superior protection

All models in our range have been designed to offer the best combination of materials and mounting styles that ensure survivability in the most rugged applications. We use sealing systems and cable connections that offer superior protection against the most hostile of operating conditions.

Impressive environmental capability

Designed with 21st century applications in mind most of our models can withstand operating temperatures from -40°C to +140°C (+170°C for 72 hours with our NRH and TPS models) and have been tested to withstand severe shock and vibration. All sensors have protection to at least IP68 rating, with some models offering protection to IP69K. With an EMC immunity of 100V/m, these position sensors are ready for the harshest applications.

Superior performance

This range of sensors has an impressive performance specification and most can operate from a 5Vdc regulated or 9 – 30Vdc supply.

Outputs can be PWM or analog voltage (nominal 0.5 - 4.5Vdc) over the measurement range, with clockwise or anticlockwise shaft rotation. A choice of 341 different electrical angles from 20° to 360° are possible. 12 bit resolution (0.025%) is available over the selected measuring range, with a nonlinearity better than $\pm 0.4\%$ and temperature stability better than ±50ppm/°C. The sensor's analog output option has a very low output noise level of less than 1mV rms.

World leading availability

All models have been 'designed for manufacture' which enables assembly in state-of-the-art manufacturing cells. This means that we can supply any of the configurations possible from the options offered, in a matter of days from ordering. This allows OEMs to reduce or eliminate their inventory, and call on Penny+Giles to supply 'on demand'.

Performance assured*

Penny+Giles product development process includes exhaustive qualification testing to ensure that performance specifications published in our product brochures and technical data sheets are backed by real-life test evidence. This is our assurance to you that our designs have been tested at these parameters.

* The qualification and suitability of these products in any customer specific application is the responsibility of the customer, unless otherwise agreed with Penny+Giles.

Selection Guide

Penny+Giles offers the widest choice of options to suit your unique application. We can also offer a custom design service if one of our standard models does not suit your requirements.

NRH280DP

• Dual output •6.5mm deep with metal flange •Separate magnet assembly •Sealed to IP69K • Raychem[™] DR25 cable

• Dual input/dual output version of NRH280DP 5Vdc operation only

• 28 x 38mm body with crush proof flange Sealed to IP68
 Integrated connector

SRH220DR

SRH280P

Single output

Dual input/dual output

- 28mm body with crush proof flange
- Three shaft styles
 Sealed to IP68

SRH280DP

- Dual output Raychem[™] DR25 cable 28mm body with crush proof flange
- Three shaft styles •Sealed to IP68

TPS280DP

- Dual output D drive Sealed to IP68 25mm body with crush proof flange Raychem[™] DR25 cable+connector
- SRH501P

SRH502P

SRH880P

- Single output
 88 mm body
- Aluminum or stainless steel housing
- Sealed to IP68M
- Wimesure 54, rue de Versailles 78460 CHEVREUSE Tél. 01 30 47 22 00 Fax 01 30 47 28 29 www.wimesure.fr • info@wimesure.fr

- Single output 87.5mm mounting flange
- Marine grade alloy housing
- Sealed to IP69K
- Dual output
 87.5mm mounting flange
- Marine grade alloy housing
- Sealed to IP69K

NRH280DP dual output no contact rotary sensor

PERFORMANCE

Voltageo output verseo

ELECTRICAL

20 to 360 in 1° increments
9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Up to 40 (-40 to +60°C)
<25
Yes
Yes
In 5V regulated mode only
<1
0.025 of measurement range (12 bit)
<±0.4
$<\pm30$ in 5V supply mode; $<\pm90$ in 9-30V supply mode

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3\%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm1\%)$
Monotonic range	Vdc Vdc	0.25 (5%) and 4.75 (95%) nominal (A1) 0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM freque	ncy	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20\%$ over temperature range
PWM levels	9-30V supply	Vdc	0 and 5 nominal (±3%)
	5V supply	Vdc	0 and Vs (±1%)
Duty cycle		%	10 to 90 over measurement range
Monotonic re	ange	%	5 and 95 nominal
Load resista	nce	Ω	10k minimum (resistive to GND)
Rise/fall time	e	μS	<15

MECHANICAL

Mechanical angl	e °	360, continuous
Maximum rotatio	onal speed °/sec	3600
Weight	g	<55 (with bolt type magnet carrier)
Mounting		Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm. Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for OEM's to integrate into their design.
Phasing		When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL

Protection class		IP68 (to 2m depth for 2 hours) and IP69K
Life		This product has no contacting parts.
Dither life		Contactless - no degradation due to shaft dither
Operational temperature ⁺	°C	-40 to +140 (5V supply) and +170°C for 72 hours
		-40 to +135.2 (9V supply option) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g40 to +100 @30V
Storage temperature	°C	-55 to +140
Vibration		BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
Shock		3m drop onto concrete and 2500g
EMC Immunity level		BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

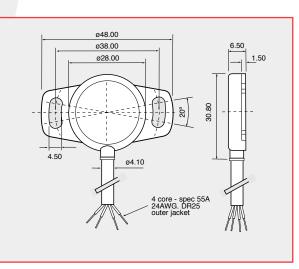
⁺ See Maximum Operating Temperature – derating graph on page 30. If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS		
Measurement range (angle)		Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output		Analog voltage (An) or PWM (Pn)
Output direction		Both clockwise, both anticlockwise or one CW, one ACW
Magnet holder		Bolt (B) or plug (P) types, or magnet only (M)
Cable length	m	0.5
OEM options		Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

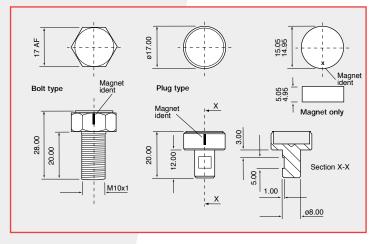
AVAILABILITY

All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

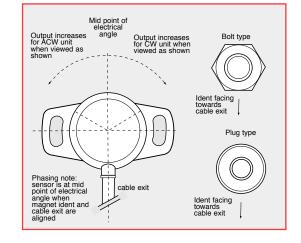
NRH280DP/...../..../...../...../...../

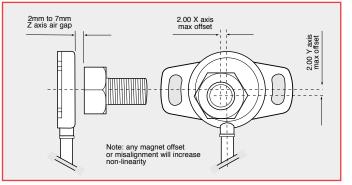

ORDERING CODES

Measurement range	CH1 = angle in °
Measurement range	CH2 = angle in °
Output	A1 = Analog 0.5-4.5Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244Hz P2 = PWM, 500Hz P3 = PWM, 1000Hz
Direction	3 = Both clockwise 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW
Magnet holder	B = Bolt type P = Plug type M = Magnet only
Cable length	P5 = 0.5m


NRH280DP

DIMENSIONS


Note: drawings not to scale


MAGNET HOLDER OPTIONS

ELECTRICAL ANGLE

MAGNET MISALIGNMENT

ELECTRICAL CONNECTIONS

500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Cable colour	Description
Red	+V Supply
Yellow	Output 1
White	Output 2
Black	0V Supply (GND)

Output increases with CW or ACW rotation viewed on sensor face - depending on selected order code

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.

NRH285DR DUAL REDUNDANTOUTPUT no contact rotary sensor - 5Vdc operation onl

PERFORMANCE

ELECTRICAL

Measurement range °	20 to 360 in 1° increments
Supply voltage Vdc	5 \pm 0.5 (regulated) to each independent sensor channel
Over voltage protection Vdc	Up to 10 (-40 to +60°C)
Maximum supply current mA	<12.5 each independent supply (<25 total)
Reverse polarity protection	Yes
Short circuit protection	
Output to GND	Yes
Output to supply	Yes
Power-on settlement time S	<1
Resolution %	0.025 of measurement range (12 bit)
Non-linearity* %	<±0.4
Temperature coefficient ppm/°C	<±30

* Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm1\%$)
Monotonic range	Vdc Vdc	0.25 (5%) and 4.75 (95%) nominal (A1) 0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) \pm 20% over temperature range
PWM levels 5V sup	ply Vdc	0 and Vs (±1%)
Duty cycle	%	10 to 90 over measurement range
Monotonic range	%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	μS	<15

MECHANICAL

Mechanical a	ngle °	360, continuous
Maximum rot	ational speed °/sec	3600
Weight	g	<55 (with bolt type magnet carrier)
Mounting		Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm. Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for OEM's to integrate into their design.
Phasing		When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The

When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

N R H 2 8 5 D R

ENVIRONMENTAL

Protection class		IP68 (to 2m depth for 2 hours) and IP69K
Life		This product has no contacting parts.
Dither life		Contactless - no degradation due to shaft dither
Operational temperature [≠]	°C	-40 to +140 and +170°C for 72 hours
Storage temperature	°C	-55 to +140
Vibration		BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
Shock		3m drop onto concrete and 2500g
EMC Immunity level		BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

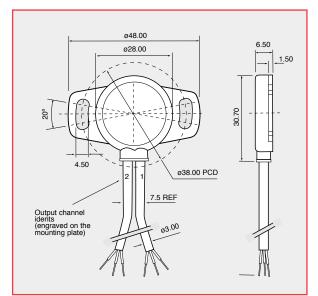
* If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

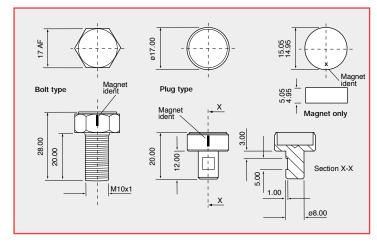
Measurement range (angle)		Select from 20° to 360° in 1° increments (factory programmed) for each output channel	
Output		Analog voltage (An) or PWM (Pn)	
Output direction		Both clockwise, both anticlockwise or one CW, one ACW	
Magnet holder		Bolt (B) or plug (P) types, or magnet only (M)	
Cable length 1	m	0.5	
OEM options		Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.	

AVAILABILITY

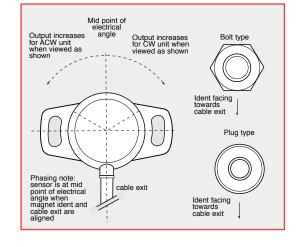
All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

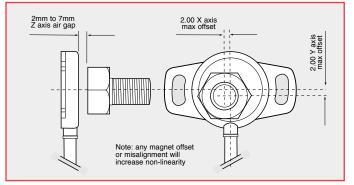

NRH285DR/...../..../..../..../..../

ORDERING CODES


CH1 = angle in $^{\circ}$ Measurement range CH2 = angle in $^\circ$ Measurement range A1 = Analog 0.5-4.5Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz Output P3 = PWM, 1000 Hz 3 = Both clockwiseDirection 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW Magnet holder B = Bolt typeP = Plug typeM = Magnet onlyCable length P5 = 0.5m

DIMENSIONS


Note: drawings not to scale


MAGNET HOLDER OPTIONS

ELECTRICAL ANGLE

MAGNET MISALIGNMENT

ELECTRICAL CONNECTIONS

2 x 500mm of 3-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Cable colour *	Description
Red	+V Supply
Yellow	Output 1+2
Black	0V Supply (GND)

Output increases with CW or ACW rotation viewed on sensor face depending on selected order code

*Cables are identified on the mounting plate. 1 = CH1, 2 = CH2 When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow) to GND (Black) and outputs to supply (Red) on NRH 285DR model only.

SRH220DR DUAL REDUNDANTOUTPUT contactless rotary sensor

PERFORMANCE

Output options

A1 | A4 | P1 | P2 | P3 0.5-4.5 or 0.1-4.9Vdc | PWM

ELECTRICAL			
Measurement range	0	20 to 360 in 1° increments	20 to 360 in 1° increments
Supply voltage	Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)	13.5 to 30 (unregulated)
Over voltage protection	Vdc	Up to 40 (-40 to +60°C)	Up to 40 (-40 to +60°C)
Maximum supply current	mA	<12.5 each independent supply (<25 total)	<30 (15 each channel)
Reverse polarity protection		Yes	Yes
Short circuit protection			
Output to GND		Yes	Yes
Output to supply		In 5V regulated mode only	Yes
Power-on settlement time	S	<1	<1
Resolution	%	0.025 of measurement range (12 bit)	0.025 of measurement range (12 bit)
Non-linearity*	%	<±0.4	<±0.4
Temperature coefficient pp	om/°C	$<\pm30$ (5V supply mode) $<\pm110$ (9-30V supply mode)	<±125

A2

0-10Vdc

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Voltage Output (order code A1, A4) - see graph on page 31

Voltage output range 9-30V supply 5V supply	Vdc Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (\pm 3%) Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (\pm 1%)
Monotonic range	Vdc	0.25 (5%) and 4.75 (95%) nominal (A1)
	Vdc	0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

Analog Voltage Output (order code A2) – see typical graph on page 31

Voltage output range	Vdc	Absolute voltage, nominally 0.2 to 9.8 $(\pm 0.2V)$
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	3.5

PWM Output (order code Pn) – see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20\%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal (\pm 3%)
5V supply	Vdc	0 and Vs (±1%)
Duty cycle	%	10 to 90 over measurement range
Monotonic range	%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	μS	<15

MECHANICAL

MECHANICAL			
Mechanical angle °	360, continuous		
Operating torque g-cm	120		
Maximum rotational speed °/sec	3600		
Weight g	<51		
Mounting	Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm		
Phasing	When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 12) output is at mid travel. The sensor housing allows for $\pm 10^\circ$ adjustment via the mounting flange slots.		
ENVIRONMENTAL			
Protection class	IP68 - with AMP connector option (when recommended mating part is fully connected) IP67 - with Deutsch connector option (when recommended mating part is fully connected)		
Life	20 million operations (10 x 10 ⁶ cycles) of ±75°; sensing element life is essentially infinite (contactless)		
Dither life	Contactless - no degradation due to shaft dither		
Operational temperature [†] °C			
Output A1, A4, P1-3	-40 to +140 (5V supply) -40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g40 to +100 @30V		
Output A2	-40 to +115 (13.5V supply) Derate upper temperature limit by 0.91°C for every 1V increase in supply: e.g40 to +100 @30V		
Storage temperature °C	-55 to +140		
Vibration	BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random		
Shock	3m drop onto concrete and 2500g		
EMC Immunity level	BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)		

[†] See Maximum Operating Temperature – Derating graph on page 30. If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

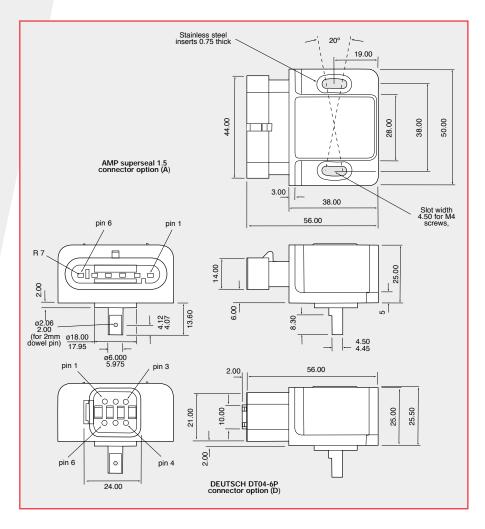
Measurement range (angle)	Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output	Analog voltage (An) or PWM (Pn)
Output direction	Both clockwise, both anticlockwise or one CW, one ACW
Shaft style	D section shaft
Connector	AMP Superseal 1.5 (A) or Deutsch DT04-6P 6-way integrated connectors
Operating lever	An operating lever kit can be supplied separately. See details on page 12
OEM options	Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements. We can also supply mating connectors, subject to minimum quantities

AVAILABILITY

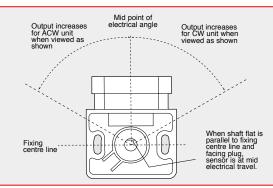
All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

ORDERING CODES

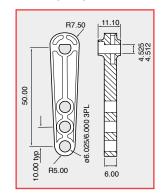
	SRH220DR///////
Measurement range	CH1 = angle in °
Measurement range	CH2 = angle in °
Output	A1 = Analog 0.5-4.5Vdc A2 = Analog 0.10Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz P3 = PWM, 1000 Hz
Direction	3 = Both clockwise 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW 6 = CH1 ACW; CH2 CW
Shaft style	D = D shaft
Connector	A = AMP 1.5 Superseal D = Deutsch DT04-6P


Accessories (order separately) Drive lever kit – SA208983 (includes lever and dowel pin)

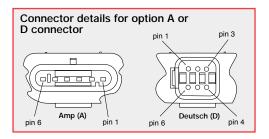
Recommended Mating Connectors (can be supplied for OEM customers) AMP Superseal 1.5 Plug – Part 282090-1 (plus 6 x receptacle contacts to match your wire size) Deutsch DT06 Plug – Part DT06-6S (plus 6 x socket contacts to match your wire size)


SRH220DR

DIMENSIONS


Note: drawings not to scale

ELECTRICAL ANGLE


LEVER OPTION

ELECTRICAL CONNECTIONS

Option A - AMP Superseal 1.5 connector **Option D** - Deutsch DT04-6P connector

Mating connectors are not supplied

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND (Black), but if the outputs are connected to the supply this will result in device failure.

Pin No	Description
1	CH1 - 0V Supply (GND)
2	CH1 - +V supply
3	CH1 - Output
4	CH2 - 0V Supply (GND)
5	CH2 - +V Supply
6	CH2 - Output

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code.

SRH280P SINGLE OUTPUT contactless rotary sensor

PERFORMANCE

Measurement range °	20 to 360 in 1° increments
Supply voltage Vdc	9 to 30 (unregulated) and 5 \pm 0.5 (regulated)
Over voltage protection Vdc	Up to 40 (-40 to +60°C)
Maximum supply current mA	<12.5
Reverse polarity protection	Yes
Short circuit protection	
Output to GND	Yes
Output to supply	In 5V regulated mode only
Power-on settlement time S	<1
Resolution %	0.025 of measurement range (12 bit)
Non-linearity* %	<±0.4
Temperature coefficient ppm/°C	<±50

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3\%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm 1\%)$
Monotonic range	Vdc	0.25 (5%) and 4.75 (95%) nominal (A1)
	Vdc	0.5 (1%) and 4.95 (99%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

PWM Output (order code P) - See output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20\%$ over temperature range
PWM levels 9-30V supply Vdc 0 and 5 nominal (±3%)		0 and 5 nominal (±3%)
5V supply	Vdc	0 and Vs (±1%)
Duty cycle	%	10 to 90 over measurement range
Monotonic range	%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	μS	<15

MECHANICAL

Mechanical angle	o	360, continuous
Operating torque - maxim	num	
sealed shaft IP68	g-cm	120
unsealed shaft IP50	g-cm	100
Shaft velocity maximum	°/sec	3600
Weight	g	<35
Mounting		Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm
Phasing		When shaft flat (or shaft ident mark) is facing toward the cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

S R H 2 8 0 P

ENVIRONMENTAL

Protection class Life		 IP68 (to 2m depth for 1 hour) or IP50 20 million operations (10x10⁶ cycles) of ±75° Sensing element life is essentially infinite (contactless); the SRH280P life figure refers to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.
Dither life Operational temperature [†]	°C	Contactless - no degradation due to shaft dither -40 to +140 (5V supply) -40 to +137 (9V supply) Derate upper temperature limit by 0.57°C for every 1V increase in supply: e.g40 to +125 @30V
Storage temperature Vibration Shock EMC Immunity level	°C	e.g40 18 + 123 @30V -55 to +140 BS EN 60068-2-64:1995 Sec 8.4 (14gn rms) 20 to 2000Hz Random 3m drop onto concrete BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

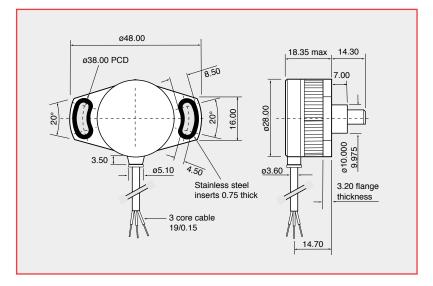
[†] See Maximum Operating Temperature – Derating graph on page 30

If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

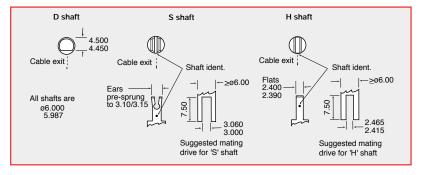
OPTIONS

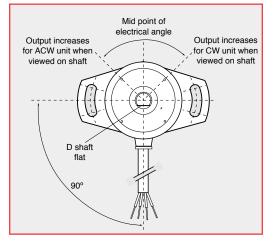
Measurement range (angle)		Select from 20° to 360° in 1° increments (factory programmed)
Output		Analog voltage (An) or PWM (Pn)
Output direction		Clockwise or Anticlockwise shaft rotation with increasing output
Shaft style		D section, sprung shaft (S) or 2.4mm blade shaft (H)
Shaft sealing		IP50 or IP68
Cable length	m	0.2, 0.5 or 2.0
Custom housing		Synchro mount style with ball race bearings - ask our technical sales team for details
OEM options		Output can be programmed to provide: non linear law; switch output; clamp voltages; faster input/output delay; extended analog range; and output mapping for potentiometer replacements

AVAILABILITY


ORDERING CODES

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details


		SRH280P/	//	//	/
Measurement range	= angle in °				
Output	A1 = Analog 0.5-4.5Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz P3 = PWM, 1000 Hz				
Direction	1 = Clockwise 2 = Anticlockwise				
Shaft style	D = D shaft S = Sprung shaft H = 2.4mm blade shaft				
Shaft sealing	50 = IP50 68 = IP68				
Cable length	P2 = 0.2m P5 = 0.5m 02 = 2.0m				


DIMENSIONS

Note: drawings not to scale

SHAFT OPTIONS

ELECTRICAL CONNECTIONS

200, 500 or 2000mm of 3-core cable: PUR sheathed, with PTFE insulated 19/0.15 cores

Cable colour	Description
Red	+V Supply
Yellow	Output
Black	0V Supply (GND)

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between output (Yellow) to GND (Black), but if the output (Yellow) is connected to the supply it will result in device failure.

SRH280DP DUAL OUTPUT contactless rotary sensor

PERFORMANCE

ELECTRICAL

....

Measurement range °	20 to 360 in 1° increments
Supply voltage Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection Vdc	Up to 40 (-40 to +60°C)
Maximum supply current mA	<25
Reverse polarity protection	Yes
Short circuit protection	
Output to GND	Yes
Output to supply	In 5V regulated mode only
Power-on settlement time S	<1
Resolution %	0.025 of measurement range (12 bit)
Non-linearity* %	<±0.4
Temperature coefficient ppm/°C	$<\pm30$ in 5V supply mode; $<\pm90$ in 9-30V supply mode

* Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3\%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm1\%$)
Monotonic range	Vdc	0.25 (5%) and 4.75 (95%) nominal (A1)
	Vdc	0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency		Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20\%$ over temperature range			
PWM levels 9-30V supply Vdc 0 and 5 nominal (±3%)		0 and 5 nominal (±3%)				
	5V supply	Vdc	0 and Vs (±1%)			
Duty cycle		%	10 to 90 over measurement range			
Monotonic ro	inge	%	5 and 95 nominal			
Load resistar	nce	Ω	10k minimum (resistive to GND)			
Rise/fall time	•	μS	<15			

MECHANICAL

Mechanical angle	0	360, continuous
Operating torque - maxim	ıum	
sealed shaft IP68	g-cm	120
unsealed shaft IP50	g-cm	100
Shaft velocity maximum	°/sec	3600
Weight	g	<35
Mounting		Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm
Phasing		When shaft flat (or shaft ident mark) is facing toward the cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL

Protection class		IP68 (to 2m depth for 1 hour) or IP50		
Life		20 million operations (10 x 10 ⁶ cycles) of $\pm 75^{\circ}$		
		Sensing element life is essentially infinite (contactless); the SRH280DP life figure refers to the		
		operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.		
Dither life		Contactless - no degradation due to shaft dither		
Operational temperature [†]	°C	-40 to +140 (5V supply)		
		-40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g40 to +100 @30V		
Storage temperature	°C	-55 to +140		
Vibration		BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random		
Shock		3m drop onto concrete		
EMC Immunity level		BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)		

⁺ See Maximum Operating Temperature – derating graph on page 30.

If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

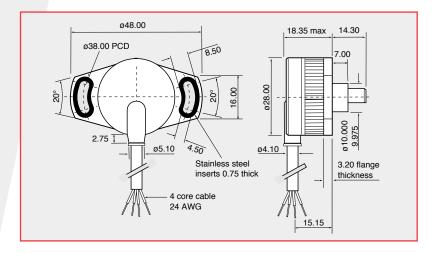
OPTIONS

Measurement range (angle)		Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output		Analog voltage (An) or PWM (Pn)
Output direction		Both clockwise, both anticlockwise or one CW, one ACW
Shaft style		D section, sprung shaft (S) or 2.4mm blade shaft (H)
Shaft sealing		IP50 or IP68
Cable length	m	0.2 or 0.5
Custom housing		Synchro mount style with ball race bearings - ask our technical sales team for details
OEM options		Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements

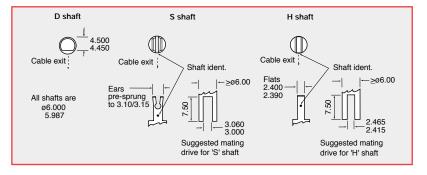
AVAILABILITY

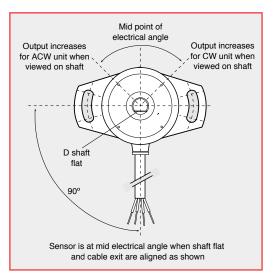
All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

SRH280DP/...../..../..../..../..../..../


ORDERING CODES

Measurement range	CH1 = angle in °
Measurement range	CH2 = angle in °
Output	A1 = Analog 0.5-4.5Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz P3 = PWM, 1000 Hz
Direction	3 = Both clockwise 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW
Shaft style	D = D shaft S = Sprung shaft H = 2.4mm blade shaft
Shaft sealing	50 = IP50 68 = IP68
Cable length	P2 = 0.2m P5 = 0.5m


SRH280DP


DIMENSIONS

Note: drawings not to scale

SHAFT OPTIONS

ELECTRICAL CONNECTIONS

200 or 500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Cable colour	Description
Red	+V Supply
Yellow	Output 1
White	Output 2
Black	0V Supply (GND)

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code.

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), **but if the outputs (Yellow & White) are connected to the supply this will result in device failure.**

TPS280DP DUALOUTPUT contactless throttle position/rotary sensor

PERFORMANCE

ELECTRICAL

MECHANICA

Measurement range ° 20 to 360 in 1° increments		
Supply voltage Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)	
Over voltage protection Vdc Up to 40 (-40 to +60°C)		
Maximum supply current mA	<25	
Reverse polarity protection	Yes	
Short circuit protection		
Output to GND	Yes	
Output to supply	In 5V regulated mode only	
Power-on settlement time S	<1	
Resolution %	0.025 of measurement range (12 bit)	
Non-linearity* % <±0.4		
Temperature coefficient ppm/°C	$<\pm30$ in 5V supply mode; $<\pm90$ in 9-30V supply mode	

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range			
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3\%$)	
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm1\%)$	
Monotonic range	Vdc	0.25 (5%) and 4.75 (95%) nominal (A1)	
	Vdc	0.05 (1%) and 4.95 (99%) nominal (A4)	
Load resistance	Ω	10k minimum (resistive to GND)	
Output noise	mVrms	<1	
Input/output delay	mS	<2	

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	,	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20\%$ over temperature range	
PWM levels 9-	30V supply	Vdc	0 and 5 nominal (±3%)	
5\	V supply	Vdc	0 and Vs (±1%)	
Duty cycle		%	10 to 90 over measurement range	
Monotonic rang	je	%	5 and 95 nominal	
Load resistance	•	Ω	10k minimum (resistive to GND)	
Rise/fall time		μS	<15	

MECHANICAL	
Mechanical angle °	360, continuous
Operating torque g-cm	10
Maximum rotational speed °/sec	3600
Weight g	<30
Mounting	Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm
Phasing	When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 21), output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.

TPS280DP

ENVIRONMENTAL

Protection class Life Dither life		 IP68 (to 2m depth for 1 hour) and IP69K 60 million operations (30 x 10⁶ cycles) of ±75°; Sensing element life is essentially infinite (contactless) Contactless - no degradation due to shaft dither
Operational temperature [†]	°C	-40 to +140 (5V supply) and +170°C for 72 hours -40 to +135.7 (9V supply option) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g40 to +100 @30V
Storage temperature Vibration Shock EMC Immunity level	°C	-55 to +140 BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random 3m drop onto concrete and 2500g BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

[†] See Maximum Operating Temperature – Derating graph on page 30.

If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

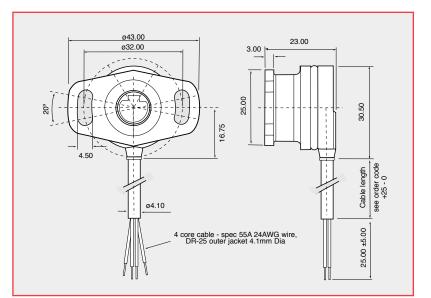
Measurement range (angle)		Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output		Analog voltage (An) or PWM (Pn)
Output direction		Both clockwise, both anticlockwise or one CW, one ACW
Cable length	m	0.2 or 0.5
Connector		Not fitted (C0) or Mini Sure Seal MSS4R fitted (C1)
OEM options		Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

AVAILABILITY

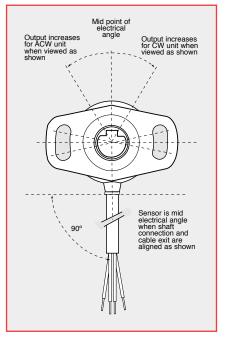
All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

ORDERING CODES

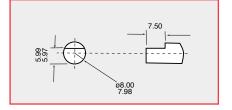
 $CH1 = angle in^{\circ}$ Measurement range Measurement range CH2 = angle in $^\circ$ A1 = Analog 0.5-4.5Vdc A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz Output


TPS280DP/...../..../..../..../...../

	P3 = PWM, 1000 Hz
Direction	3 = Both clockwise 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW
Cable length	P2 = 0.2m P5 = 0.5m
Connector	C0 = No connector C1 = Mini Sure Seal MSS4R

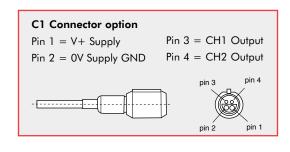

Accessories (order all items separately) Mating connector – X61-227-002 Mini Sure Seal MSS4P X61-227-201 PIN contact (2off required) X61-227-202 SOCKET contact (2off required)

DIMENSIONS


Note: drawings not to scale

ELECTRICAL ANGLE

RECOMMENDED MATING DRIVE


ELECTRICAL CONNECTIONS

Option C0 - 200 or 500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Option C1 - Mini sure seal MSS4R fitted to cable

Cable colour	Description
Red	+V Supply
Black	0V Supply GND
Yellow	CH1 Output
White	CH2 Output

Output increases with CW or ACW rotation viewed on shaft drive depending on selected order code

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.

SRH501P SINGLEOUTPUT AND SRH502P DUALOUTPUT rugged contactless rotary sensors

PERFORMANCE				
Output options		A1 A4 P1 P2 P3	A2	A3
		0.5-4.5 or 0.1-4.9Vdc PWM	0-10Vdc	4-20mA
ELECTRICAL				
Measurement range	0	20 to 360 in 1° increments	20 to 360 in 1°	increments
Supply voltage				
unregulated	Vdc	9 to 30	13.5 to 30	9 to 30
regulated	Vdc	5 ±0.5	No	No
Over voltage protection	Vdc	Up to 40 (-40 to +60°C)	Up to 40 (-40 t	o +60°C)
Maximum supply current	mA	<25	<30	<25+total output current
Reverse polarity protection	I	Yes	Yes	Yes
Short circuit protection				
Output to GND		Yes	Yes	Yes
Output to supply		In 5V regulated mode only	Yes	Yes
Power-on settlement time	S	< 1	< 1	<1
Resolution	%	0.025 of measurement range (12 bit)	0.025 of measu	urement range (12 bit)
Non-linearity*	%	<±0.4	<±0.4	<±0.4
Temperature coefficient p	pm/°C	$<\pm30$ in 5V supply mode	<±50	<±200 typical
		<±90 in 9-30V supply mode	N/A	<±200 maximum**

*Non-linearity is measured using the Least-Squares method on a computerised calibration system **Temperature compensation possible by using graph shown on page 30

---**-**

Analog Voltage Output - (order code A1, A4) see typical graph on page 31

9	
Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3\%$)
Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm1\%)$
Vdc	0.25 (5%) and 4.75 (95%) nominal (A1)
Vdc	0.05 (1%) and 4.95 (99%) nominal (A4)
Ω	10k minimum (resistive to GND)
mVrms	<1
mS	<2
	Vdc Vdc Vdc Ω mVrms

Analog Voltage Output - (order code A2) see typical graph on page 31

Voltage output range	Vdc	Absolute voltage, nominally 0.2 to 9.8 $(\pm 0.2V)$
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	3.5

Analog Current Output - (order code A3) see typical graph on page 31

Current output range	mA	Absolute current, nominally 4 to 20 $(\pm 2\%$ span)
Load resistance	Ω	400 maximum (resistive to GND)
Output noise	μArms	<10
Input/output delay	mS	3.75

PWM Output options (order code Pn) see output characteristics on page 31

Hz Vdc Vdc	244 (P1); 500 (P2); or 1000 (P3) \pm 20% over temperature range 0 and 5 nominal (\pm 3%)	
	0 and Vs (±1%)	
%	10 to 90 over measurement range	
% 10 to 90 over measurement range onic range % 5 and 95 nominal		
$\frac{1}{10} \frac{1}{10} \frac$		
	<20	
20		
0	360, continuous	
g-cm	1000	
°/sec	3600	
g	265 (without cable)	
	Use 3 x M6 threaded holes in front face or 3 x M6 (or 1/4 UNC) clearance holes through the flange – See dimensions for details	
	When the shaft flat is facing towards the cable exit, sensor output is at mid electrical angle $(\pm 5^\circ)$	
	IP69K with cable codes Bxx and Sxx	
	IP68 or IP69K with cable code C01 when mating connectors (see page 26) are attached and fully	
	engaged)	
	20 million operations (10 x 10 ⁶ cycles) of ±75° Sensing element life is essentially infinite (contactless), and the SRH501P/502P life figures refer to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.	
	Contactless - no degradation due to shaft dither	
	2Kg mounted on sensor shaft - tested 3 million cycles	
°C		
-3	-40 to +140 (5V supply) -40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g40 to +100 @30V	
A2	-40 to +115 (13.5V supply) Derate upper temperature limit by 0.91°C for every 1V increase in supply: e.g40 to +100 @30V	
A3	-40 to +120 (9V supply) Derate upper temperature limit by 1.05°C for every 1V increase in supply: e.g40 to +98 @30V	
°C	-55 to +140	
	BS EN 60068-2-64:1995 Sec 8.4 (14gn rms) 20 to 2000Hz Random	
	3m drop onto concrete and 2500g – all axes	
	BS EN 61000-4-3:1999, to 100V/m, 80MHz to1GHz and 1.4GHz to 2.7GHz (35V/m 1.4GHz to 2.7GHz for output A3) (2004/108/EC)	
	BS EN 60068-2-52: 1996, Test Kb Severity 2 (48hr)	
	BS EN 60068-2-30: 2005, Severity Db (55°C, 93%RH)	
	μS g-cm g/sec g -3 A2 A3	

If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)	Select from 20° to 360° in 1° increments (factory programmed) for each output channel		
Output	Analog voltage (A1, A2, A4)		
	Analog current (A3)		
	PWM (Pn)		
coming soon in 2012	CANbus outputs: J1939 (J1); CANopen (O1)		
Output direction	Both clockwise, both anticlockwise or one CW, one ACW		
Electrical connections	No cable (A00, S00), 1m, 5m, 10m unscreened (Bxx) or screened (Sxx) cable or M12 receptacle (C01)		
Cabled sockets	1.5, 2, 5 & 10m mating cabled sockets can be ordered separately. See details on page 26		
Operating levers	Operating levers 155 or 230mm long can be ordered separately. See details on page 25		
OEM options	Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.		

SRH501P AND SRH502P

AVAILABILITY

ORDERING CODES

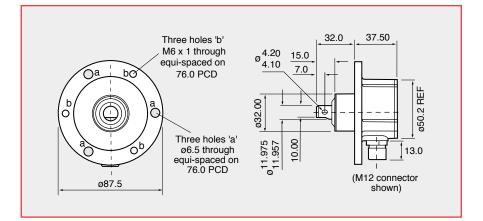
NOTE: When selecting output option A3 (4-20mA), cable codes Sxx are the only cable codes allowable.

All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

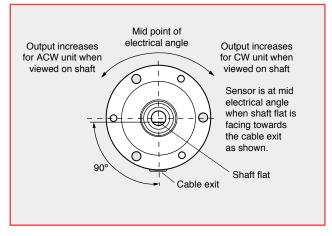
SINGLE OUTPUT SRH50)1P S	RH501P//	//
Measurement range	= angle in °		
Output	A1 = Analog 0.5-4.5Vdc A2 = Analog 0-10Vdc A3 = Analog 4-20mA A4 = Analog 0.1-4.9Vdc P1 = PWM, 244 Hz P2 = PWM, 500 Hz P3 = PWM, 1000 Hz		
Direction	1 = Clockwise 2 = Anticlockwise		
Cable code	A00 = No cable, gland fitting S00 = No cable, screened ca		put option – see note)
	B01= 1m 3-core unscreened B05= 5m 3-core unscreened B10= 10m 3-core unscreene	cable, IP69K	
	S01= 1m 3-core screened cc S05= 5m 3-core screened cc S10= 10m 3-core screened c	ıble, IP69K	itput options – see note)

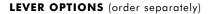
C01 = M12 screw locking receptacle

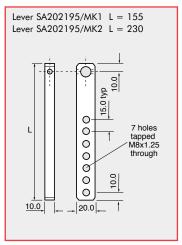
DUAL OUTPUT SRH502P


SRH502P/...../..../..../...../

Measurement range	CH1 = angle in °
Measurement range	CH2 = angle in °
Output	A1 = Analog 0.5-4.5Vdc A2 = Analog 0-10Vdc A3 = Analog 4-20mA A4 = Analog 0.1-4.9Vdc
	P1 = PWM, 244 Hz P2 = PWM, 500 Hz P3 = PWM, 1000 Hz
Direction	3 = Both clockwise 4 = Both anticlockwise 5 = CH1 CW; CH2 ACW
Cable code	A00 = No cable, gland fitting S00 = No cable, screened cable gland (A3 output option – see note)
	B01 = 1m 4-core unscreened cable, IP69K B05 = 5m 4-core unscreened cable, IP69K B10 = 10m 4-core unscreened cable, IP69K
	S01 = 1m 4-core screened cable, IP69K (A3 output options – see note) S05 = 5m 4-core screened cable, IP69K S10 = 10m 4-core screened cable, IP69K
	C01 = M12 screw locking receptacle

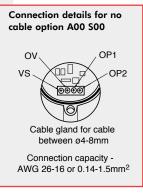

Accessories (order separately) Drive lever kit – SA202195/MK - see page 25 Mating connectors - see details on page 26

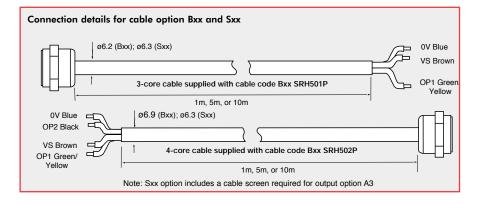

DIMENSIONS


Note: drawings not to scale

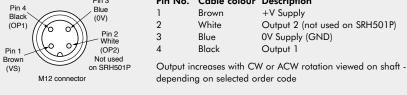
PHASING OF SHAFT TO HOUSING

SRH501P AND SRH502P


ELECTRICAL CONNECTIONS


Option A00 - No cable supplied

Option S00 –	No cable supplied (Fitted gland to suit screened cable)
Option Bxx –	Cable supplied (1m, 5m or 10m)
Option Sxx –	Screened cable supplied (1m, 5m or 10m)
Option C01 –	Series M12 screw locking


receptacle to IEC 61076-2-101 (Ed.1) /IEC 60947-5-2 fitted to sensor body. Mating cabled sockets to be ordered separately.

CONNECTING CABLE OPTIONS

Connection details for option C01 - M12 connector (not available for output A3) Pin 3 Pin No. Cable colour Description

M12 mating connectors for cable option C01 (order separately) Connector IP68 2 metre X61-220-101 5 metre X61-220-102 10 metre X61-220-103

When connecting the sensor, care should be taken with the correct connections.

The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND, but if the outputs are connected to the supply this will result in device failure.

SRH880P SINGLE OUTPU rugged contactless rotary sensor

PERFORMANCE

ELECTRICAL

Measurement range	0	20 to 360 in 1° increments
Supply voltage V	dc	9 to 30 (unregulated) and 5 \pm 0.5 (regulated)
Over voltage protection V	dc	Up to 40 (-40 to +60°C)
Maximum supply current m	nA	<12.5
Reverse polarity protection		Yes
Short circuit protection		
output to GND		Yes
output to supply		In 5V regulated mode only
Power-on settlement time	S	<1
Resolution	%	0.025 of measurement range (12 bit)
Non-linearity*	%	<±0.4
Temperature coefficient ppm/	/°C	<±50

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 over measurement range $(\pm 3\%)$
5V supply	Vdc	Ratiometric output voltage - 10 to 90% of Vs over measurement range($\pm 1\%$)
Monotonic range	Vdc	0.25 (5%) and 4.75 (95%) nominal
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/output delay	mS	<2

PWM Output (order code P) - See output characteristics on page 31

PWM frequency		Hz	244 $\pm 20\%$ over temperature range
PWM levels 9	-30V supply	supply Vdc 0 and 5 nominal (±3%)	
5	5V supply	Vdc	0 and Vs (±1%)
Duty cycle		%	10 to 90 over measurement range
Monotonic ran	ge	%	5 and 95 nominal
Load resistanc	e	Ω	10k minimum (resistive to GND)
Rise/fall time		μS	<20

MECHANICAL

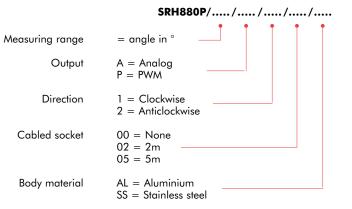
Mechanical angle	0	360, continuous
Operating torque - max	g-cm	1000
Shaft velocity max	°/sec	3600
Weight	g	500
Mounting		Use 3 x M6 threaded holes in front face or 3 x M6 clearance holes through the body - see dimensions for details
Phasing		When the shaft flat is facing the scribed mark on the front face (as shown in the diagram), sensor output is at mid travel $(\pm 5^\circ)$

S R H 8 8 0 P

ENVIRONMENTAL

Protection class		IP68
Life		20 million operations (10 x 10 ⁶ cycles) of ±75°
		Sensing element life is essentially infinite (contactless), but the SRH880P life figures refer to the
		shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.
Dither life		Contactless - no degradation due to shaft dither
Operational temperature ⁺	°C	-40 to +120 (5V and 9V supply)
		-40 to +90 (30V supply)
Storage temperature	°C	-55 to +125
Vibration		10 to 2000Hz Random – 12.6gn rms – all axes
Shock		Survival to 2500g – all axes
EMC Immunity level		BS EN 61000-4-3:1999 to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

⁺ If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

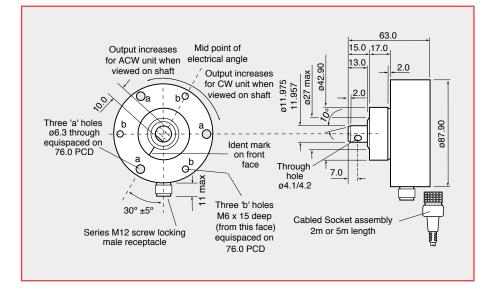

OPTIONS

Measurement range (angle) Output Output direction Cabled socket Body material	Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (A) or PWM (Pn) Clockwise or Anticlockwise shaft rotation with increasing output 2m or 5m cabled socket assemblies available Optional anodised aluminium or corrosion resistant stainless steel housing	
Operating levers	Operating levers 155 or 230mm long should be ordered separately. See details page 25	
OEM options	Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; alternative PWM frequencies; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.	

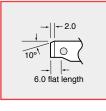
AVAILABILITY

ORDERING CODES

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details


Accessories (order separately) Drive lever kit – SA202195/MK - see page 25

DIMENSIONS


Note: drawings not to scale

LEVER OPTIONS

See SRH501P page 25

SHAFT FLAT DETAIL

Pin 4

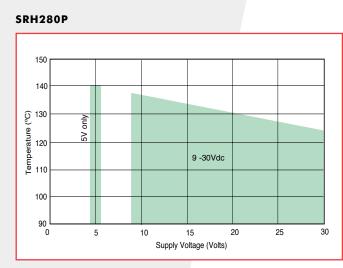
Pin 1

ELECTRICAL CONNECTIONS

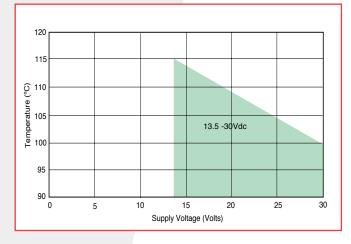
Straight cabled socket

E series M12 to IEC 61076-2-101(Ed.1) /IEC 60947-5-2, PUR jacket Conforms to VDE 0472 part 804 Cable temperature range -25 to +90°C

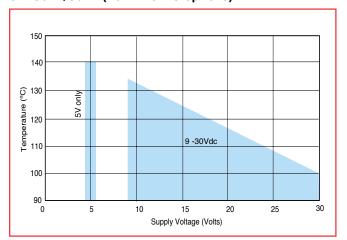
Pin 3 Pin No. Pin 2 (n/c) M12 connector Pin 2 Orientation lug M12 connector Pin 2 Output inc viewed on order rodd

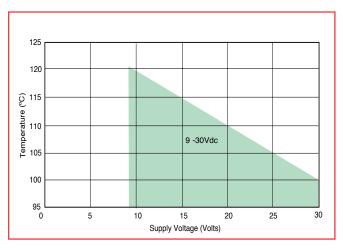

Cabled socket 2 metre long No. X61-169-102 5 metre long No. X61-169-105

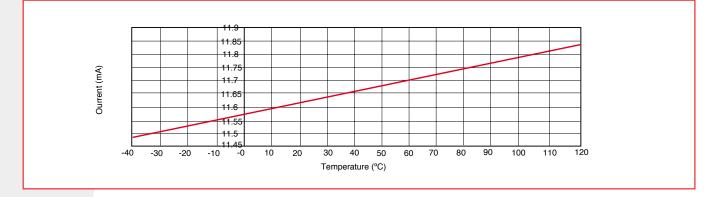
Pin No.	Cable colour	Description			
1	Brown	0V Supply (GND)			
2	Not connected				
3	Blue	+V Supply			
4	Black	Output			
Output increases with CW or ACW rotation					
viewed on shaft - depending on selected					
order code					

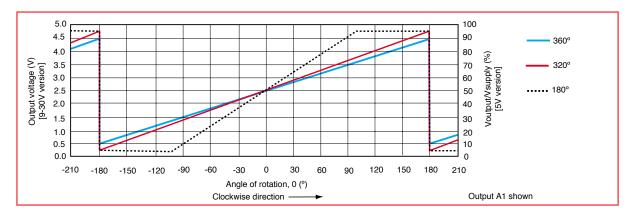

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with indefinite reverse polarity protection and short circuit protection between output (Pin 4 - Black) to GND (Pin 1 - Brown), but if the output (Pin 4 - Black) is connected to the supply this will result in device failure.

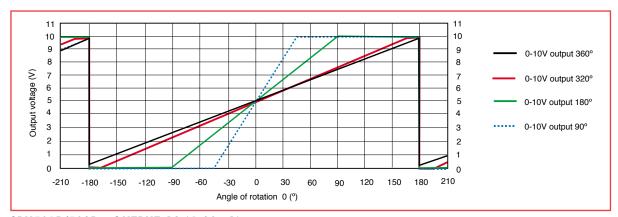
TEMPERATURE AND OUTPUT GRAPHS


MAXIMUM OPERATING TEMPERATURE - DERATING GRAPHS

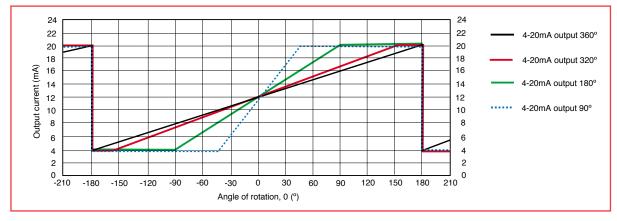

SRH220DR, SRH501P/502P - OUTPUT A2


SRH280DP, NRH280DP, TPS280DP, SRH220DR SRH501P/502P (not A2 & A3 options)

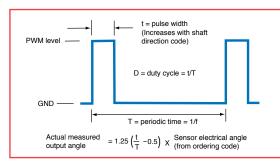

A3 Typical temperature slope characteristic (can be used for compensation)


Wimesure • 54, rue de Versailles • 78460 CHEVREUSE • Tél. 01 30 47 22 00 • Fax 01 30 47 28 29 www.wimesure.fr • info@wimesure.fr

SENSOR OUTPUT GRAPH- examples for three different angles


SRH280P, SRH280DP, NRH280DP, NRH285DR, TPS280DP, SRH220DR - OUTPUT A1 SRH501P/502P - OUTPUT A1 SRH880P - OUTPUT A

SRH220DR,SRH501P/502P - OUTPUT A2 (0-10Vdc)



SRH501P/502P - OUTPUT A3 (4-20mA)

PWM OUTPUT CHARACTERISTICS

SRH280P, SRH280DP, NRH280DP, NRH285DR, TPS280DP, SRH220DR - OUTPUT P1, P2, P3 SRH501P/502P - OUTPUT P1, P2, P3 SRH880P- OUTPUT P

PWM levels = zero volt and 5V (\pm 3%) for 9-30V supply = zero volt and V_s (\pm 1%) for 5V supply

Wimesure • 54, rue de Versailles • 78460 CHEVREUSE • Tél. 01 30 47 22 00 • Fax 01 30 47 28 29 www.wimesure.fr • info@wimesure.fr